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Abstract in English 

Cognitive Radio (CR) is a widely used wireless radio communication to utilize the 

available spectrum space of licensed users (Primary Users) efficiently. In CR, secondary 

users (SUs) try to sense and utilize the vacant spectrum of the legitimate primary user (PU) 

in an efficient manner. The process of cooperation among SUs makes the sensing more 

authentic with minimum disturbance to the PU in achieving maximum utilization of the 

vacant spectrum. Although cooperative spectrum sensing (CSS) in current/future wireless 

network has the problems of multipath fading, shadowing and noise uncertainty, CSS is 

vulnerable by spectrum sensing data falsification attacks (SSDF) which occurs by malicious 

users (MUs) sending false data to the fusion center (FC). In literature, these attacks are 

alleviated using reputation schemes in which the history of the user is traced and accumulated 

for future contacts. Reputation-based solution might hack the privacy of user [1].  

In this study, the detection probability is raised using the coefficient of variation (CV), 

which measures the variation of the sampled signals. If the signal variation measurements at 

FC exceed a certain level, it is assumed that another user is using the spectrum bands. In 

order to reduce user misbehavior in the CR network, the FC makes a global decision based 

on the hard binary decisions received from all SUs without identifying or knowing the precise 

location of each user. Numerical simulations demonstrate that the two suggested methods 

achieve a good detection performance of CR network. Also, a comparison between the fixed 

measurement approach and the sequential measurement method was made to confirm that 

the last one minimizes system overhead. MATLAB was used to investigate the impact of the 

amount of malicious users, the probability of their attacks, and the number of measures on 

FC detection. 
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 icالمستخلص   

  Cognitive Radio (CR)  هو اتصال لاسلكي واسع الاستخدام للاستفادة من مساحة الطيف المتاحة للمستخدمين

( استشعار واستخدام الطيف SUs، يحاول المستخدمون الثانويون ) CRالمرخصين )المستخدمون الأساسيون( بكفاءة. في 

استشعار اثناء  بين المستخدمين الثانويين  عند حدوث عملية تعاون .( بطريقة فعالةPUالشاغر للمستخدم الأساسي الشرعي )

ساعد مما ي،  PUالإزعاج لـ ل كثر واقعية مع تقليأ رتكونالاستشعاعملية ن إف،  )بدلا من استشعار فرديا لكل مستخدم( الطيف

( في الشبكة اللاسلكية الحالية CSSعلى الرغم من أن الاستشعار التعاوني للطيف ) الشاغر.في تحقيق اقصى استفادة من الطيف 

المستقبلية يواجه مشاكل الخبو متعدد المسارات والتظليل وعدم اليقين من الضوضاء ، إلا أن الاستشعار التعاوني للطيف  /

( الذين MUsالتي تحدث من قبل المستخدمين الخبثاء )  (SSDF) ون عرضة لهجمات تزوير بيانات استشعار الطيفيك

(. في الأدبيات ، يتم تخفيف هذه الهجمات باستخدام مخططات السمعة التي FC) مركز دمج البياناتيرسلون بيانات خاطئة إلى 

الاتصال المستقبلية. الحل القائم على السمعة قد يخترق خصوصية المستخدم يتم فيها تتبع تاريخ المستخدم وتجميعه لجهات 

[1.] 

 

( ، الذي يقيس تباين الإشارات التي تم أخذ CVفي هذه الدراسة ، يتم رفع احتمالية الاكتشاف باستخدام معامل التباين )

مستوى معيناً ، يفُترض أن مستخدمًا آخر يستخدم نطاقات الطيف. من  FCعينات منها. إذا تجاوزت قياسات تغير الإشارة عند 

التي تتمثل بأصفار (قرارًا عالمياً بناءً على القرارات الثنائية  FC، يتخذ  CRأجل الحد من سوء سلوك المستخدم في شبكة 

توضح عمليات المحاكاة   .لكل مستخدموحدات النظام دون تحديد أو معرفة الموقع الدقيق التي يتم تلقيها من جميع   )وواحدات

كما تم إجراء مقارنة بين أسلوب القياس الثابت وأسلوب  .CRالعددية أن الطريقتين المقترحتين تحققان أداء كشف جيد لشبكة 

ضيح لتحليل وتو  MATLAB برنامج تم استخداميقلل من الحمل الزائد للنظام.  الثانيالقياس المتسلسل للتأكد من أن الأسلوب 

 (.FC)الى مركز دمج البيانات لبيانات المطلوب ارسالهاعدد المستخدمين الضارين، واحتمالية هجماتهم، وعدد اماهية تأثير 

 

Keywords— Primary User, Secondary User, Malicious User, Detection, Security, 

Energy Detector, Cognitive Radio, Probability of Detection, Gaussian Approximations, 

Cooperative Sensing, Spectrum Sensing, Probability of False Alarm, Fixed Measurement 

Approach, Sequential Measurement Approach. 
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Chapter 1  

Introduction 

1.1 Background 

The radio spectrum of interest in wireless communication systems ranges from 3 Hz 

to 3000 GHz [2]. Terminals in these systems communicate with each other over a portion of 

the radio spectrum. 

Governments worldwide, through the International Telecommunication Union (ITU), 

have divided the radio spectrum into several ranges, each of which is allocated for a specific 

technology-based wireless communication. According to the spectrum regularity bodies, the 

spectrum allocation process is static. The main advantage of the allocation process being 

static is that it can generate the best quality of service in terms of interference among the 

allocated ranges. 

Several frequency occupancy measurements, conducted in different countries, show 

that the static spectrum allocation process is the reason for spectrum underutilization. Since 

the 1920s, outdated technologies have motivated the static process. 

Several solutions have been proposed to address the issue of spectrum 

underutilization, including dynamic spectrum sensing-based CR networks. Spectrum sensing 

(SS) is a prerequisite for the deployment of wireless networks [3]. SS is the mechanism by 

which an SU transceiver detects the absence of PU in order to use the PU-allocated spectrum. 

That part of the spectrum resulting from the PU being idle is known as the "hole" or "white 

space" [4], [5]. In CR networks, there are two types of users: the PU, who has the full right 
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to use licensed spectrum, and the SU, who could have the licensed spectrum if and only if 

the PU is absent. 

The main idea behind CR technology is that it senses the environment of the PU in 

order to decide if it is active or inactive. If the PU is inactive, the SU can use the licensed 

spectrum band; otherwise, the SU must keep silent. 

There are numerous local detection approaches available for determining whether or 

not the PU is busy. However, each of these strategies is appropriate for a particular scenario. 

In signal processing methods for SS, three main approaches are commonly used [6]: 

• Matched filter (MF) 

• Energy detector (ED)  

• Cyclostationary feature detector 

  

In MF, the SU receivers can identify the PU signal by creating a filter that is 

appropriate for the received signal type. This method implies that SU is aware of the 

specifications of the PU signal, such as its bandwidth, frequency, type of modulation, packet 

format, etc. The ability of the MF to maximize the received signal-to-noise ratio (SNR) is 

shown in [7]. The advantage of MF is that it takes less time to attain high processing gains 

due to its coherency. However, a main disadvantage of a MF is the requirement of a unique 

receiver for each PU. As a result, the aforementioned drawback limits the utilization of the 

MF. 
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When using the cyclostationary detection (CSD) approach, the SU searches for semi-

periodic features that are relevant to the operating frequency, required bandwidth, frame 

format, and modulation types [5]. A drawback of the cyclostationary feature detector is that 

it requires more processing time and computational complexity [8]. 

Compared to matched or cyclostationary detectors, ED has a significant benefit in 

that it is simple and does not require any a priori knowledge of the primary signal. In 

cooperative sensing, it is the most widely used sensing method [9–11]. The SNR wall is a 

restriction on the ED’s performance that is imposed by the noise uncertainty effect, which 

has a significant impact on the ED's sensing performance [12–14]. 

ED has been extensively used in radiometry. Consequently, we only discuss the ED 

in detail. A signal's energy over a specific amount of time is calculated using an energy 

detection algorithm, and it is compared to a deterministic threshold value to determine 

whether the PU is present. The energy detection algorithm's block diagram is shown in 

Fig.1-1 [27]. 

 

 

Fig.1-1: Block Diagram of Energy Detection Algorithm [27] 

 

It is composed of four main blocks [37]: 

1) Band Pass Filter 
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2) Squaring Device 

3) Integrator 

4) Threshold device 

 

This method involves passing the signal through a band pass filter with a bandwidth 

of W, multiplying it by itself to square it, and integrating the result over a period of time. The 

presence or absence of the PU is then determined by comparing the output from the integrator 

block to a predefined threshold. Depending on the channel conditions, the threshold value 

can either be fixed or variable [37]. 

Local identification of the status of the PU is highly affected by wireless channel 

conditions like multipath fading, shadowing, noise uncertainty and hidden terminal problem 

[15]. For this reason, the CSS is preferred over the individual one. In CSS, group of users 

make sensing to make a global decision which is more accurate than only one decided. This 

cooperation can alleviate the problems of fading, error, shadowing and noise uncertainty. 

However, CSS is highly vulnerable to SSDF [16]. In an SSDF attack, a misbehaving SU 

shares incorrect information in order to degrade CSS performance. 

There are two types of CSS. One is centralized CSS, such that the SUs send their 

local detection to the FC, where a decision is made about the absence or presence of a 

legitimate user. The second is decentralized CSS, in which each SU determines the presence 

of PU based on the information they have independently gathered. The final decision of 

whether or not PU is present will thereafter be made by the collaborating users as there isn't 

a fusion center. However, the primary issue with decentralized CSS is that, because the 
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wireless channel is constantly changing, SS made by a single user is useless. Therefore, the 

decision is inaccurate if any SU decides whether or not PU is present. Additionally, the 

overhead in the system will rise as a result of the SUs collaborating to share decisions of this 

type with other groups and with each other. To reduce the overhead and decision-making 

errors, we employed centralized CSS for this. After that, the decisions are then sent to FC to 

be summed to determine the system status. 

There are four different categories of abnormal SUs (MU): the opposite malicious 

user or always false (OMU), the random opposite malicious user (ROMU), the always yes 

malicious user (AYMU), and the always no malicious user (ANMU).  

Regardless of the actual PU spectrum status, an AYMU sends a high-energy signal 

to the FC, which increases the likelihood of false alarms and decreases throughput for the 

SUs. Because the licensed user channel is always available thanks to the ANMU, the 

likelihood of a misdetection is increased, and the interference with the PU transmission 

increases as a result. Similar to how it does with the PU's actual condition, the OMU always 

negates it. In terms of AYMU and ANMU, it's an extreme case. Due to the OMU, the PU is 

subjected to increased interference, false alarms, misdetection probabilities, and bandwidth 

reduction. The ROMU performs malicious acts with a discrete distribution and a specific 

probability, which makes their malicious nature unpredictable and challenging to eliminate. 

According to probability α, the ROMU behaves as an OMU, and according to probability 1- 

α, it expresses as a normal SU [35, 36]. In this research, the proposed method is tested based 

on the performance of ROMU, as that is the general case for all different categories of MU. 

A statistical technique was used in a few studies to examine how well CR performed. 

However, no one has yet studied this technique in CR while saving privacy in a ROMUs-
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hard-decision network. Therefore, this thesis mainly focuses on the performance of the CR 

system by alleviating the misbehaving behavior of the user without specifically identifying 

each user. 

This thesis proposes two measurement approaches: fixed FC scheme for PU detection 

(PUD) based on a single threshold is performed using a fixed number of MUs and a sequential 

FC scheme in which ℓ is a random variable, sufficient measurements are sent to FC from all 

users, and a double threshold determines the decision made at FC. The work mainly considers 

the effect of both schemes in the overhead in the system. The study also includes analyzing 

the effect of the number of malicious and their probability of attacking, as well as the number 

of measurements, on FC detection.   

 

1.2 Literature Review 

Many efforts have gone into developing the SS of the CR system. Many papers have 

been written about detecting spectrum holes by distinguishing the PU signal from the noise 

signal. In [17], discrete wavelet transform (DWT) techniques are used to identify spectrum 

holes in a wide-band power spectrum. In [18], the continuous wavelet transform (CET) and 

DWT are proposed for edge detection on wide-band SS. The authors of [19] devised a 

wavelet strategy for SS in CR and compared various wavelet transform algorithms to 

highlight the significance of choosing the appropriate wavelet schemes. The authors of [20] 

suggested a higher order moment-based adaptive SS approach and compared it to a multilevel 

threshold for the decision stage. The discrete cosine transform (DCT) was used by the authors 

of [21] to create a novel energy-based SS technique rather than the discrete fourier transform 



7 | P a g e  
 

(DFT). However, this approach disregards the relationship between noise extraction and 

DCT coefficients. 

The variation of collected energy in the first and final sub-bands of one-level DWT 

decomposition is used to identify the PU embedded in noise in [22]. The nature of the first 

sub-band in the DWT is that it has the highest signal energy (information), as opposed to a 

noise signal. As a result, each sub-band is approximately gathering the same level of energy. 

The most popular detection technique in CSS is still energy detection [23]. This is 

due to the fact that the diversity benefit of collaboration might somewhat offset the 

performance degradation caused by noise uncertainty. The detection performance of an ED 

used for CSS in a CR network is examined over channels with both multipath fading and 

shadowing. CSS in a frequency-selective fading environment is suggested in [24] and is 

based on Welch periodogram research. The study concentrated on the detection of orthogonal 

frequency division multiplexing (OFDM) signals. The impact of the frequency-selective 

channel was investigated for both single-carrier and multi-carrier transmissions. In [25], a lot 

of work is done on signal detection utilizing the ideal ED. 

The best local threshold should be chosen in order to identify the PU [26]. Double 

threshold energy detection and choosing the optimal threshold. have been researched in this 

area. In order to lessen communication traffic, a sensing technique utilizing a double 

threshold for energy detection was suggested in [26]. Under the assumption that the ED has 

two threshold values, this technique is used to enhance the macro detection capabilities of 

CR networks. In [27], the optimal energy level in the fuzzy zone-a region between the low 

and high energy thresholds-was found using the Bi-Section technique. The Bisection function 

for cognitive users was used to set the decision threshold for this situation. The proposed 
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approach performs better in terms of detection performance than traditional double-threshold 

energy-sensing schemes, but it does not account for MUs. The authors of [28] proposed a 

sensing approach that does not account for MUs and is based on a statistical parameter that 

represents the ratio between variance and mean energy values as an indicator of whether the 

received signal is a PU or simply noise. 

Attackers will make a defective decision regarding the use of the spectrum during the 

collaborative SS decision-making process by injecting fabricated observations. More 

importantly, by interfering with the CSS's normal operation, MUs can unlawfully occupy 

spectrum bandwidth. As a result, [29], [30], and [31] introduce reputation-based approaches 

for combating untruthful SUs in a CR Network. In this instance, the MU will be recognized 

and given the option of being removed from the group or having his local decision discarded. 

For example, a recurrent neural network boundary detection technique is utilized in [32] to 

estimate the location of SUs. In order to order them to discard all SUs with the least order 

because they might be a MU, the Malicious User Detection by Ordering (MUDO) 

methodology is used. According to [29], a secure CSS method is created to fend off SSDF 

attacks based on reputation mechanisms, and the beta reputation model is used to assign 

reputation values to cognitive sensor nodes in accordance with their historical sensing 

behavior as a method of attacker identification. Using hierarchical clustering architecture, a 

reputation-based CSS scheme was proposed in [30], which successfully reduced the impact 

of multipath fading, shadow, and malicious attack by using the two-level reputation 

estimation. The authors of [42] proposed a sensing approach based on a statistical parameter 

(that takes into account MUs) as an indicator of whether the received signal is a PU or simply 

noise. But it’s a soft decision and depending on Rayleigh fading channel and the signals are 

complex Gaussian not real. 
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Here, this thesis makes use of the robust CV tool to increase the detection probability 

by considering the SNR, which is not just one value and in which the percentage of MUs 

varies from 1-100% of all SUs. The FC makes a decision at the global level based on the hard 

binary decisions received from all SUs in order to restrict a user's inappropriate behavior in 

the CR network and avoid privacy violations [33], [34]. Basically, the value of this research 

is assessed in light of its findings.  

In order to achieve the goals of the study, the following working scenario was used 

to achieve the study's objectives:  

1. A fixed FC scheme (which is simple for various system scenarios) for PU detection 

(PUD) based on a single threshold is performed using a fixed number of MUs (N𝑚). 

2. Analyzing the impact of the number of malicious and their probability of attacking, 

as well as the number of measurements, on FC detection is another aspect of the study. The 

analysis of the algorithm was carried out using MATLAB. 

           3. A sequential FC scheme in which ℓ is a random variable, sufficient 

measurements are sent to FC from all users, and a double threshold determines the 

decision made at FC. 

 

1.3 Thesis Outline 

The remainder of this thesis is organized into the following four chapters: The model, 

performance metrics, the concept of local detection, ED principles, the analysis of FC global 

decisions using fixed and sequential proposed algorithms, the explanation of the closed form 

expression for CV, and the majority rule principle are all introduced in Chapter 2. The next 
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chapter, Chapter 3, introduces the simulation results of the system that was carried out using 

MATLAB.  The two proposed algorithms (the sequential technique and the fixed method), 

the majority rule, and the analytical and numerical forms for the CV are all examined in this 

chapter. Additionally, it illustrates and analyzes how changing the SNR, number of 

malicious, and attacking probability affects the CV values and error probability. Chapter 4 

concludes and highlights the accomplishments of this thesis, emphasizing its importance. 
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Chapter 2  

Models and Performance Metrics 

     2.1   System Description 

We consider Nu is the number of SU sensors; some are MU sensors and others 

are legitimate user sensors. Each sends a hard decision to FC, who makes the final 

decision of whether or not PU is present. Each SU senses the spectrum to determine if the 

PU signal (S) present or not. S is the PU signal, which is a Gaussian process randomly 

received by each sensor and has different values for zero mean and variance σ2s . Then 

the w(t) is added which is zero mean and variance σ2w .  X(t) which is the signal detected 

for each sensor makes sensing over a specific time interval and taking T samples is 

entered into the ED to compare with the threshold λ. Following that, the local hard 

decision (Ẑ) is sent to FC so that it can make a decision based on the forwarding times 

(ℓ). This global decision is determined based on the estimated mean, variance values at 

each attacking probability and SNR values.  

 

For this thesis, we have two models:  

 For single threshold: the ℓ is fixed and equal to the total number of 

measurements sent to FC by all users.  

 For double threshold: the ℓ  is random variable that equals the enough number 

of measurements that all users have sent to FC. 
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Fig.2-1: System Description 

 

2.2   System Model 

In CR networks, SS is a crucial component that enables SU to identify unutilized 

spectrums that belong to the primary system and to significantly utilize unutilized 

frequency bands without interfering with primary systems [38]. 

Through the sensing channel, all cognitive sensor nodes will detect the PU's 

signal, and then they will report their local decisions to the FC. The legitimate sensor 



13 | P a g e  
 

nodes in the SS process share actual energy levels, while the malicious sensor nodes 

provide the FC their fabricated sensing data for final combining.  

 

2.2.1      Binary Hypothesis Testing Problem 

 

Signal detection at the SU can be modeled as a Binary Hypothesis Testing 

Problem, given as: 

Hypothesis 0 (H0): PU signal is absent 

Hypothesis 1 (H1): PU signal is present 

 

 Based on binary hypotheses, the spectrum sensing for a specific frequency band 

can be generally formulated by: 

 

X(t)  = {
w(t) ,                      H0
S(t) + w(t),          H1

        , where t =1,2, 3……. T                                (1)  

 

where S(t) and w(t) are zero-mean, Gaussian-distributed random variables with 

variances  σ2s  and σ2w , that is, S(t)∼N (0,σ2s ) and w(t)∼N (0,  σ2w ), representing the 

PU signal and the additive white Gaussian noise (AWGN), respectively, as a detecting 

signal for the SUs. The variance σ2s  of PU signal being independent of the w(t) variance 

σ2w . We assumed that variances are identical for all t =1, 2, 3...T. where T is the total 

number of samples.  
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The SNR in the system is calculated by equation SNR= 
𝛔𝟐𝐬 

𝛔𝟐𝐰 
 . 

 

2.2.2    Test Statistic for Local Detection 

 

For the detection of the signal at each one of SUs, ED is implemented for detection 

in SS. Collect the test statistic and compare it to a threshold 𝛾 to decide whether the PU 

exists. The test statistic Y of any sensor node for T samples (T is the number of 

measurements that enter to each SUs sensor to make its own local decision) is calculated 

by:    

 X(t) is a vector of T measurements such that: 

X(t) = Xt = [X1, X2, X3…… . , XT]                                  (2) 

 Under H0 : X~𝑁 (0, σ2w ) 

 Under H1 : X~𝑁 (0, σ2s + σ
2
w )            

 

    From equation(2), the symbol X(t) will replace with Xtfor simplicity.    

             

Y =    ∑   (Xt)
2T

t=1                                                                                              (3)                                                

                                  

The distribution of Y is chi square distribution which approximated as Gaussian 

by virtue of the central limit theorem (CLT) [39]. So, we can find the mean and variance 

of Y as follow: 
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µY = E[ ∑   Xt
2T

t=1 ] = E[X1
2 + X2

2 +⋯ . . XT
2] =T* σ2X                                            (4)  

  σY
2 = var (∑   Xt

2T
t=1 ) =  E[Xt

2 − µXt
2]
2
= 2Tσ4X                                                 (5) 

 

a) Under 𝐇𝟎 :  

 

X~𝑁 (0, σ2w)  

Y = ∑  Xt
2 T

t=1  ~    χT
2 = Γ (

T

2
 ,2)                                                                                     (6)         

                              

 The chi-squared distribution  is a special case of the gamma distribution. Then the 

mean and variance Under H0 are as follow compared with equations (4) and (5). 

 

µY/H0= T *σ2w                                               (7)

                                       

σ2Y/H0 =2* T *σ2w                                                                                                 (8)             

 

  The variance σ2s  being independent of σ2w . We assumed that variances are 

identical for all t =1, 2, 3...T. where T is the total number of samples. Also, under H0 we 

have only the noise so the equation (5) be as above.     

                                                

https://en.wikipedia.org/wiki/Gamma_distribution
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b) Under 𝐇𝟏 :  

 

X~𝑁 (0, σ2s + σ
2
w)  

 

Y =    ∑   (w(t) + S(t))2T
t=1                                                                  (9) 

 

Then:  ∑  Xt
2 T

t=1  ~   Γ (
T

2
 ,2*(σ2

s 
+ σ2w) )                                          (10)   

                     

Then the mean and variance under H1 are as follow compared with equations (4) 

and (5). 

 

µY/H1= T *(σ2
𝑠 
+ σ2w)                         (11)

                                   

σ2Y/H1 =2* T *  (σ2𝑠 + σ
2
w) 

2                                                     (12)

                                   

 

Y follows the Chi- square distribution. If the number of samples T is large, with 

the central limit theorem (CLT), we can assume that the Chi-square distribution is 

approximate as Gaussian distribution [39]. 

The classical Neyman-Pearson (NP) approach [40] for hypothesis testing defines 

the test statistic as likelihood ratio test (LRT) which is found based on the approximation 

of the statics’ given by: 
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f(Y/H1) 

f(Y/H0)        <H0

       >H1

    γ                                                                                                         (13)                                                                   

  

Where Y is the test statistic given in equation (3),  γ is the threshold. 

 

1

√2πσ2Y/H1 

    e 

−(Y−µY/H1
)
2

2σ2Y/H1 

1

√2πσ2Y/H0 

    e 

−(Y−µY/H0
)
2

2σ2Y/H0 

     <H0
>H1   γ                                                                      (14) 

 

σY/H0

σY/H1
 
 e 

−(Y−µY/H1
)
2

2σ2Y/H1 

 e 

−(Y−µY/H0
)
2

2σ2Y/H0 

     <H0
>H1   γ                                                                                      (15) 

 

(Y−µY/H0)
2

2σ2Y/H0 
2   − 

(Y−µY/H1)
2

2σ2Y/H1 
          <H0

>H1      ln ( γ
σY/H1
σY/H0

)                                                       (16) 

 

 

Y2−2YµY/H0+µ
2
Y/H0

2σ2Y/H0 
 − 

Y2−2YµY/H1+µ
2
Y/H1

2σ2Y/H1 
          <H0

>H1    ln ( γ
σY/H1
σY/H0

)                                 (17) 

 

σ2Y/H1 (Y
2 − 2YµY/H0 + µ

2
Y/H0

) − σ2Y/H0 (Y
2 − 2YµY/H1 +

µ2
Y/H1

)  <H0
>H1     ln ( γ

σY/H1
σY/H0

)2σ2Y/H1 σ
2
Y/H0                                             (18)       
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Y2(σ2Y/H1 − σ
2
Y/H0 ) − 2Y[µY/H0σ

2
Y/H1 − µY/H1σ

2
Y/H0 ] + µ

2
Y/H0

σ2Y/H1  −

µ2
Y/H1

σ2Y/H0 )  <H0
>H1     ln ( γ

σY/H1
σY/H0

) 2 σ2Y/H1 σ
2
Y/H0                                              (19) 

                   

Let:  a=σ2Y/H1 − σ
2
Y/H0                                                                                        (20)   

       

b=µY/H0σ
2
Y/H1 − µY/H1σ

2
Y/H0                                                                               (21)   

   

c= (µ2
Y/H0

σ2Y/H1  − µ
2
Y/H1

σ2Y/H0 ) −    ln ( γ
σY/H1
σY/H0

) 2σ2Y/H1 σ
2
Y/H0                      (22)    

                                   

aY2 − 2Yb + c              <H0
>H1    0                                                       (23) 

                            

Y2 −
2b

a
Y +

c

a
              <H0

>H1    0                                                          (24)                            

 

By complete square: add and subtract 
b2

a2
 

 

(Y −  
b

a
 )
2

   <H0
>H1 b

2

a2
−

c

a
                                                            (25) 

 

| Y −  
b

a
 |   <H0

>H1   ± √max( 0 ,
b2

a2
−

c

a
 )                                                                          (26)   

 

I take the maximum to make sure that answer is positive or zero if negative. 
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The roots are: 

R1 =  
b

a
−√max ( 0 ,

b2

a2
−

c

a
 )          ,           R2 = 

b

a
+√max( 0 ,

b2

a2
−

c

a
 )                 

 

 

There are 3 regions as follow with the sign in each region: 

 

 

 

The performance of energy detector is characterized by using following metrics, 

which have been introduced based on the test statistic under the binary hypothesis: 

 

  False alarm probability (Pfa): the probability of deciding the signal is present 

while H0 is true. 

 Missed-detection probability (Pmd): the probability of deciding the signal is 

absent while H1 is true. 

 Detection probability (Pd ): the probability of deciding the signal is present when 

H1 is true. 

 

1- Under 𝐇𝟎: 

 

The false alarm probability can be given as: 
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Pfa = pr(Y < R1 or Y > R2) /H0). Consider the IEEE 802.22 wireless regional area 

network, which is one of the most common CR standards for accessing unused licensed 

frequencies in the TV band; according to this standard, the false-alarm probability of CR 

should be 0.1 and the Pd must be ≥ 0.9 [41]. Further, the detection and false-alarm 

probabilities are greatly affected by the selected threshold value in the SS approach and 

selection of the threshold is a crucial step to yield the status (presence or absence) of PU 

[41]. 

  

Pfa=∫
1

√2πσ2Y/H0 

    e 

−(Y−µY/H0
)
2

2σ2Y/H0 dY
R1 

−∞
+ ∫    

∞

R2

1

√2πσ2Y/H0 

    e 

−(Y−µY/H0
)
2

2 σ2Y/H0 dY                          (27)          

 

Pfa   =  1 −    Q (
R1−µY/H0

σY/H0
) +  Q (

R2−µY/H0

σY/H0
 )                        (28)

                     

where Q(u)= 
1

√2π
∫  e 

−(u)2

2
 ∞

u
du is the Gaussian-Q function.     

 

 

2- Under 𝐇𝟏 : 

 

The detection probability, 𝑃𝑑 can be derived as: 
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Pd= pr((Y < R1 or Y > R2)/H1)=∫
1

√2πσ2Y/H1 

    e 

−(Y−µY/H1
)
2

2σ2Y/H1 dY
R1 

−∞
+

                                                                     ∫    
∞

R2

1

√2πσ2Y/H1 

    e 

−(Y−µY/H1
)
2

2 σ2Y/H1 dY            (29)

                        

                                                            =  1 − ∫
1

√2πσ2Y/H1 

    e 

−(Y−µY/H1
)
2

2σ2Y/H1 dY
R2 

R1
                     (30)          

                                                                        

                                           = Q (
R2−µY/H1
σY/H1

 )  - Q (
R1−µY/H1
σY/H1

)                                (31) 

 

Pd   =  1-   [ Q (
R1−µY/H1
σY/H1

) - Q (
R2−µY/H1
σY/H1

 )  ]                                  (32)                                                                  

 

 

It’s appeared that the Pfa depends only on the mean, variance of Y under H0 which 

means dependency on  σ2w . But the Pd depends on the σ2s , σ
2
w .  

     

As a result, the n-th SU local decision is: 

 

Ẑ = {
0,        R1 < Y < R2

    1,     Y < R1 or Y > R2
                                              (33)
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2.2.3 Secondary User Signal Processing at Output of Energy Detector: 

 

The sensor node takes part in CSS and transmits to FC, for a subsequent global 

fusion decision, the local outcome, which is 0 or 1, indicating that the channel is idle and 

occupied. 

 

We consider a Nu number of SUs sensors. Among them, the legitimate user (LU) 

nodes share the real energy values in the SS process, but the MU nodes send their falsified 

sensing data to the FC which need to decide the final state of PU. 

 

As Nu= Nm+Nn.Then, SUs are two types: 

 

 a) MU which is present as Nm of the total number Nu, and the exact number of MU is 

not important for FC as it must be robust to decide. 

b) LUs number is Nn. 

 

The main attack steps used by MUs are as follows: 

  

(1) All malicious nodes begin spectrum sensing with the same local spectrum 

sensing as normal nodes and also make their own local sensing decisions.  

(2) With a probability of α, each malicious node independently chooses whether 

to attack or not.  
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(3) The malicious node will send reporting that conflicts with the local sensing 

data to the FC if it decides to launch an attack. If not, the malicious node simply reports 

the actual local sensing data instead of launching an attack.  

(4) On the basis of malicious and non-malicious nodes sharing their local sensing 

results, the FC decides in CSS that the primary user does not exist, or the global decision 

indicates that the primary user exists. 

 

The following flow chart shows the Bayes theorem tree of the system under H0, 

H1: 

 

 

Fig.2 -2: Flow Chart of Decision Tree for  𝑀𝑈𝑠, 𝐿𝑈𝑠. 

 

In this study, the MU is of the ROMU type, and it attacks with a probability of α. 

After the attack is determined, the MU node provides the FC with a report that conflicts 

with the local sensing results. Generally, each SU will send a value of 0 or 1 with the 

following probabilities to the FC: 
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�̂�MU = {
0,     (1 − α)(1 − p1) + p1α

1,    α(1 − p1)  + p1(1 − α) 
                                                                                          (34)     

                                

�̂�LU = {
0,     1 − p1   
1,        p1      

                                                                                                     (35)             

     

Based on Fig.2-2: p1= Pfa under H0 and p1 = Pd under H1. 

 

The detection probability and false alarm probability of MUs can be written as: 

   

{
PfaMU =  p(Ẑ = 1 /H0) =   α(1 −  Pfa)+ Pfa(1 − α)

PdMU =   p(Ẑ = 1 /H1) =    α(1 − Pd) +  Pd(1 − α)
                                                                  (36)             

 

Each LU will send a hard decision over the channel which is assumed to be a 

perfect channel (error-free) for simplicity. Also, the MUs make a hard decision to transmit 

it to FC. 

 

  The detection probability and false alarm probability of LU nodes can be written 

as: 

 

{
PfaLU = p(Ẑ = 1 /H0) =  Pfa

PdLU = p(Ẑ = 1 /H1) = Pd 
                                                    (37)

  

where Pd and  Pfa represent the local detection probability and false alarm 

probability of the sensing node. 
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2.2.4 Fusion Center for Primary User Detection 

 

The FC fuses the received local binary decisions and makes the global decision 

about the authorized spectrum according to: 

 

 

Zs =   ∑   (Ẑ)
(K)Nu

K=1                                     (38)               

       

 

Depending on the measurements that each SU sends to FC, the FC makes decision 

depending on the CV tool which estimate the mean, variance for �̂� = [1,0] using sample 

mean and sample variance estimators. The number of measurements or the forwarding 

times ℓ is required for FC to be able make decision such that: 

 

Zsj    = 

[
 
 
 
 

      

 

Zs1
Zs2
⋮

 Zsℓ   

     

]
 
 
 
 

                                                      (39) 

 

  where: Zs1 =    [    Ẑ
(1)

1  , Ẑ
(2)

1 , ……… , Ẑ(Nu)1  ] the first locally decisions 

sending from all SUs to FC. 

 

Upon reception of the   Zsj (ℓ × ( Nm+Nn )) - dimensional frame matrix signal. 

Each row in matrix represents one sending to FC from all SUs. Depending on it, the FC 

find the following: 
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The sample mean µ̂Zs  is an estimate of the population mean µ. Given a sample of 

size ℓ, consider ℓ independent random variables Zs1, Zs2, ..., Zsℓ ,each corresponding to 

one randomly selected observation.  

Here, first by finding the saparse summation of the hard decision from all SUs, 

then the temporal summation will be found to have a ℓ × Nu total number of 

measurements and find the mean and variance based on it. 

 

The sample mean of Zs is defined to be :   

µ̂Zs =
1

ℓNu
∑ Zsj
ℓ
j=1  = 

1

ℓ
∑ ∑   (Ẑ)

(K)Nu
K=1

ℓ
j=1                                                      (40) 

 

The sample variance of  Zs is:                

σ ̂Zs
2  =

1

ℓNu−1
  ∑  (∑   (Ẑ)

(K)Nu
K=1

ℓ
j=1 −µ̂Zs)

2 for ℓ ≥2.                                     (41)   

  

CV =
 µ̂Zs

σ ̂Zs
                                                    (42)           
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2.2.4.1 Fusion Center Detection Using Fixed Measurements Method 

 

For the detection of the signal at FC, collect the test statistic of the fixed number 

of measurements ℓ sent to FC and compare it to a threshold η to decide whether the PU 

exists. The test statistic at FC is calculated by:  

 

CV =
 µ̂Zs

σ ̂Zs
     <H0
>H1    η                                              (43)                       

 

The maximum CV under H0 and the minimum CV under H1 were used to 

determine η. In this case, η represents the average value of the gap between the CVH0 and 

CVH1. 

 

η =   CVH0 +
CVH1 − CVH0

2
                                                                             (44)              

                              

If CV > η, it means the PU is present, and we get 1 detection.  

If CV < η, it means the PU is absent, and we get 0 detection. (We ignore the possibility 

of CV = η).  

 

The detection probability and false alarm probability of the FC can be written as: 

 

{
PFAFC = p(CV >   η    /  H0) 

PDFC =  p(CV >   η    / H1) 
                                                               (45)              
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Based on the equation (43). In SS, the error probability at FC is calculated as 

follows: 

  

 

Perror = Pi 0 ∗ (PFAFC) + (Pi 1) ∗ (1 − PDFC)                                                      (46)                                   

 

Where    Pi 0 = pr(H0), Pi 1 = pr(H1) 

 

 

2.2.4.2: Closed Form Expression for the CV  

 

In this section, the closed form of the CV calculation is explained as follows: 

Zs =   ∑   (Ẑ)
(K)Nu

K=1                                                                 (47)    

 

 

      =   ∑   (Ẑ)
(K)
+   ∑   (Ẑ)

(K)𝐍𝐧
K=1

𝐍𝐦
K=1                                                (48) 

 

As   (Ẑ)
(K)

  is a hard decision that LUs and MUs send to FC. It therefore follows 

to the Bernoulli distribution. 
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 The mean at FC: 

 

�̂� follow Bernoulli distribution so: 

Mean Zs  = E [Zs] = E [  ∑   (Ẑ)
(K)
  +    ∑   (Ẑ)

(K)𝐍𝐧
K=1

𝐍𝐦
K=1 ]                                                      (49) 

 

      

                                  = E [  ∑   (Ẑ)
(K)𝐍𝐦

K=1 ] + E [  ∑   (Ẑ)
(K)𝐍𝐧

K=1 ]                                    (50) 

 

     

                                 =  ∑ E [  (Ẑ)
(K)
]

𝐍𝐦
K=1   +   ∑ E [  (Ẑ)

(K)
]

𝐍𝐧
K=1                                          (51) 

 

      

                               = ∑ (1 − p1)α + p1(1 − α)   
 𝐍𝐦
K=1 + ∑ p1  

 𝐍𝐧
K=1                                     (52)    

            

To find the means and variances at FC under H0 and H1, the value of p1in the 

equation(52) will be substituted as follow: 

              

As the number of malicious is changeable and the  Pfa is  the same for all SUs and has 

a constant value, the summation in the equation(53) can be expressed as: 

                             

                  

1- Under 𝐇𝟎:            p1 =  Pfa  
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As the number of malicious is changeable and the  Pfa is  the same for all SUs and has 

a constant value, the summation in the equation(52) can be expressed as:  

 

Mean ZsH0
= Nm((1 −  Pfa)α +  Pfa(1 − α))  +  Nn Pfa                                         (53)   

  

   

2- Under 𝐇𝟏 :              p1 =  Pd  

 

Mean ZsH1
= Nm((1 −  Pd)α +  Pd(1 − α)) + Nn Pd                                             (54)

      

 

The variance at FC: 

 

As   ∑   (Ẑ)
(K)
, ∑   (Ẑ)

(K)𝐍𝐧
K=1

𝐍𝐦
K=1  are independent, hence the variance is the sum 

of two variances. 

 

Variance Zs=  var(∑   (Ẑ)
(K)
) + var(  ∑   (Ẑ)

(K)𝐍𝐧
K=1

𝐍𝐦
K=1 )                                            (55)

   

var(  ∑   (Ẑ)
(K)𝐍𝐦

K=1 ) =   ∑ [(1 − α)(1 − p1) + p1α ][(1 − p1)α + p1(1 − α)]
 𝐍𝐦
K=1     (56)                        
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          = α + p1 − 4p1α + 4αp1
2  −  p1

2 − α2  +  4p1α
2 −   4p1

2α2  

 

 

var(  ∑   (Ẑ)
(K)𝐍𝐧

K=1 ) =  ∑ [(1 − p1)p1 ]
 𝐍𝐧
k=1                                                                  (57)

    

   

Variance Zs   =  ∑ [(1 − α)(1 − p1) + p1α ][(1 − p1)α + p1(1 − α)]
 𝐍𝐦
K=1   

+ ∑ [(1 − p1)p1 ]
 𝐍𝐧
k=1                                                  (58)  

                         

 

1- Under 𝐇𝟎: 

 

Variance ZsH0
 =     ∑ [(1 − α)(1 −  Pfa) + Pfaα ][(1 −  Pfa)α + Pfa(1 − α)]

 𝐍𝐦
K=1 +   

∑ [(1 −  Pfa) Pfa ]
 𝐍𝐧
k=1                                                       (59)            

                              

2- Under 𝐇𝟏: 

 

Variance ZsH1
 =    ∑ [(1 − α)(1 −  Pd) +  Pdα ][(1 −  Pd)α +  Pd(1 − α)]

 𝐍𝐦
K=1 + 

∑ [(1 −  Pd) Pd ]
 𝐍𝐧
k=1                                           (60)

               

                                                                  

The CV at FC:                                      
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CV    = 
Mean Zs

√Variance Zs
   = 

∑ (1−p1)α +p1(1−α)   
 𝐍𝐦
K=1 +∑ p1  

 𝐍𝐧
k=1   

√∑ [(1−α)(1−p1)+p1α ][(1−p1)α +p1(1−α)]
 𝐍𝐦
K=1 + ∑ [(1−p1)p1 ]

 𝐍𝐧
k=1

            (61)    

  

 

1- Under 𝐇𝟎: 

 

CVH0    =   
Mean ZsH0

√Variance  ZsH0

 

 

             =    
∑ (1− Pfa)α + Pfa(1−α)   
 𝐍𝐦
K=1 +∑  Pfa  

 𝐍𝐧
k=1   

√∑ [(1−α)(1− Pfa)+Pfaα ][(1− Pfa)α+Pfa(1−α)]
 𝐍𝐦
K=1 +∑ [(1− Pfa) Pfa ]

 𝐍𝐧
k=1

  

             (62)     

 

 

2- Under 𝐇𝟏: 

                               

CVH1   = 
Mean ZsH1

√Variance  ZsH1

   

 

           = 
∑ (1− Pd)α + Pd(1−α)   
 𝐍𝐦
K=1 +∑  Pd  

 𝐍𝐧
k=1   

√∑ [(1−α)(1− Pd)+ Pdα ][(1− Pd)α + Pd(1−α)]
 𝐍𝐦
K=1 +∑ [(1− Pd) Pd ]

 𝐍𝐧
k=1

               

                            (63)     
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2.2.4.3: LRT Method (Majority Rule) 

 

Local decisions made by SUs are gathered and forwarded to FC for a final 

decision denoted as F(x), which can be expressed as follows: 

 

F(x)= { 
H1        , if Zs  ≥ η 
H0       , otherwise

                                 (64)     

 

In this case, η is a value between 0 and Nu depends on the number of users, and 

Zs is the sum of the local decisions that FC received from all SUs. 

 

Let m represent the percentage of the malicious in the system. 

The probability of receiving 1 under H1 is:  

 

P1=Pr (receive 1/H1)   = m(α(1 −  Pd )   +  Pd (1 − α))  +(1 − m) Pd 

           = m (α − α Pd +  Pd − α Pd) +(1 − m) Pd 

= mα −  2mα Pd  +  m Pd+ Pd −mpd  

=  Pd +mα(1 − 2 Pd) 

= 1 − [ αm(2 Pd − 1) + (1 −  Pd)    ]                                            (65)    
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The probability of receiving 1 under H0 is:   

P0=Pr (receive 1/H0)= 1 − [ αm(2Pfa − 1) + (1 − Pfa)    ]                             (66) 

 

The MU behaves like the honest one (LU) at low SNR values. As a result, 

guessing is high since FC is unable to distinguish between illegal and honest users’ ones 

and zeros as the noise is very high in this case.  

 

Here, we want to know the conditions to FC be blind of distinguish between 1,0 

under both hypothesis H1, H0 at low or high SNR: 

1- 0 < m <1 as it is representing the percentage of the malicious. 

2- 𝛂 > 0.4   as when α is less than 0.4, the FC will be able to distinguish between 

1,0. 

 

Pr (receive 1/H1)                                   =         Pr (receive 1/H0)   

1 − [ αm(2Pd − 1) + (1 − Pd)    ]          =      1 − [ αm(2Pfa − 1) + (1 − Pfa)    ]         

  m[α(2Pd − 1) − α(2Pfa − 1)  ]             =      Pd − Pfa 

m =
Pd− Pfa

α(2Pd−2Pfa)
        = 

1

2α
                                                                                        (67) 
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If α = 1, then m = 0.5 indicates that 50% of the malicious decisions are sent 

correctly and 50% are sent falsely, meaning that Perror= 0.5. 

Also, when m = 1 , α = 0.5  then  Perror    =0.5  

 

For explaining the majority rule: 

Zs =   ∑   (Ẑ)
(K)Nu

K=1                                                (68) 

 

 x: is the joint distribution of receiving 1 under H1or H0,  which follow Binomial 

distribution. The probability density function (pdf) of LRT method is: 

 

P(x/H1) 

P(x/H0)        <H0

       >H1

    γ                                                                                (69) 

 

∏  
Nu 
K=1 (1−P1)

1−x P1
x 

∏  
Nu 
K=1 (1−P0)

1−x P0
x  
       <H0

       >H1

    γ                                                                        (70)        

 

 As m represents the percentage of the malicious in the system. 

      P1 = Pr (receive 1/H1) = m(α(1 −  Pd )   +  Pd (1 − α))  +(1 −m) Pd 

P0 =Pr (receive 1/H0) = m((1 −  Pfa)α +  Pfa(1 − α))  +  (1 − m) Pfa  
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Here, as all SUs hard decision are independent on each other in numerator 

and denominator , the multiplication can be simplified as summation. 

 

 
   P1

∑ x
Nu
K=1        (1−P1) 

∑ (1−x
Nu
K=1 )

P0
∑ x
Nu
K=1        (1−P0) 

∑ (1−x
Nu
K=1 )

        <H0

       >H1

    γ                               

   P1
∑ x
Nu
K=1        (1−P1) 

Nu−∑ x
Nu
K=1

P0
∑ x
Nu
K=1        (1−P0) 

Nu−∑ x
Nu
K=1         <H0

       >H1

    γ                                                           (71)    

 

Let D denote  the number of one’s or the number of successes  in the vector 

Zs  so: 

D=   ∑ x
Nu
K=1       which follows the binomial distribution.      

 

  P1
D       (1−P1) 

Nu−D

P0
D       (1−P0) Nu−D        <H0

       >H1

    γ                                          (72)                                                 

 

( 
1−P1

1−P0
)
Nu
 (
P1(1−P0)

P0(1−P1)
)
𝐷

    
      <H0

       >H1     γ                                                                (73)                                                 

 

Taking the natural logarithms of both sides 
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Nu ∗  ln ( 
1−P1

1−P0
) ∗ D ∗ ln (

P1(1−P0)

P0(1−P1)
)
       <H0

      >H1

 ln (γ)                         let γ = 1                    (74)                                                  

 

Nu ∗  ln ( 
1−P1

1−P0
) ∗ D ∗ ln (

P1(1−P0)

P0(1−P1)
)
       <H0

      >H1

   0                                              (75)                                                 

 

 To find the threshold for the majority rule: 

η ={

Nu+1

2
  if Nu is odd 

Nu

2
   if Nu is even

                      (76)                                                 

as  Nu = 30   then η = 15 

 

The detection probability and false alarm probability of the FC can be written as: 

 

{
PFAFC = p(D >   η  /  H0) 

PDFC =  p(D >   η    / H1) 
                                                (77) 

 

PFAFC = p(D >   η  /  H0) =∑ (30
D
)Pfa

D
 (1 − Pfa)

30−DD=30
D=15                      (78) 

 

 

PDFC =  p(D >   η    / H1)     =∑ (30
D
)Pd

D
 (1 − Pd)

30−DD=30
D=15                    (79)
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Based on the equation (43). In SS, the error probability at FC is calculated as 

follows: 

 

Perror = Pi 0 ∗ (PFAFC) + (Pi 1) ∗ (1 − PDFC)                                       (80) 

 

  

2.2.4.4: Fusion Center Detection Using Sequential Measurements Method 

 

Sequential analysis, also referred to as sequential hypothesis testing, is a type of 

statistical analysis where the sample size is not fixed. Rather, data are evaluated as they 

are collected, and further sampling is stopped in accordance with a predetermined 

stopping rule when significant outcomes are found. This would reduce system overhead 

because a decision could be made much faster than with conventional hypothesis testing 

or estimation. 

The FC uses the CV tool to generate a global decision based on the decisions 𝑍s 

in equation (38) that each SU provides to the FC. The CV tool uses sample mean and 

sample variance estimators to estimate the mean and variance for �̂�= [1,0]. The number 

of measurements or the forwarding times ℓ are changed for FC to be able to make a 

decision. 
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For the same system model in Section 2.1 in which the number of malicious users 

in the system is specified, and the FC makes detections based on that information. 

However, the sequential method differs from the fixed method since ℓ, the estimator size 

random variable, is equal to the sufficient number of measurements sent to FC from all 

SUs such that ℓ ≥ 2 as the sample variance is unbiased. 

 

Upon reception of the 𝑍sj(ℓ × (N𝑚+N𝑛)) - dimensional frame matrix signal as 

appeared in equation (39). Each row in matrix represents one sending to FC from all SUs. 

Depending on it, the FC will calculate the cumulative sum of the received data vector 𝑍sj, 

as new data arrive for j=2,3,4.... 

 

The FC makes the global decision about the authorized spectrum according to: 

 

  𝑍s: the sum of local hard decision from all   SUs as appear in equation (38) . 

 

Zs  =    ∑ (Ẑ)
(K)Nu

K=1                        (81) 

 

     = ∑ (Ẑ)
(K)
+   ∑ (Ẑ)

(K)𝐍𝐧
K=1

𝐍𝐦
K=1                      (82) 

 

Actually: The combiner was utilized in the first method (fixed) to collect the 

arriving 𝑍s till a decision could be made. Here, to enable comparison, we divided the total 

of the gathered data by the number of measurements ℓ using the same combiner, as 

follows: 
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Let :Zj = [Z1 , Z2, Z3… . . , ZNu] is a vector of the local decisions sending from all 

SUs to FC. 

 

𝑍j  : The first time that the sum of the data in the vector from all SUs send to FC 

achieve the threshold (this is a sum of Bernoulli random variable so it follows binomial 

distribution). But ,this case can’t happen as ℓ ≥ 2. 

 

𝑍j̅: The previous sum of the hard decision that does not achieve a specified 

threshold. 

 

[𝑍j̅, 𝑍j]: The second time the data send to FC till the threshold is achieved (this is 

also weighted sum of two binomial). 

 

[𝑍j̅,  𝑍j̅̅ ̅, 𝑍j]:  The third time till the threshold is achieved (this is also weighted sum 

of three binomial). 

. 

. 

. 

[𝑍j̅,  𝑍j,̅̅ ̅̅ …… . . , 𝑍j]:  The ℓ times required till the threshold is achieved (this is also 

a sum of ℓ weighted binomial). 

 

The method's mean, variance, and CV match those determined for the fixed in 

equations. However, since l is a random variable in this case, our equations use a weighted 
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binomial. The variance follows the weighted binomial, but the mean is not much 

impacted. 

 

Based on the CLT, the binomial is estimated to be Gaussian. 

 

The FC uses the CV tool to estimate the mean and variance for �̂� = [1,0] based on 

the data that each SU gives to it. Sample mean and sample variance estimators are used 

in this process. For FC to be able to make a decision, the number of measurements or the 

forwarding times are required. 

 

The sample mean and the sample variance are estimated and the CV calculated as 

appeared in equations (40), (41), and (42) respectively to compare to the double 

thresholds (λ1, λ2) shown in Fig.3-12. If CV is greater λ2 or less than λ1, the FC will be 

able to make a decision. The decision will not be clear for FC if the CV is between λ1 and 

 λ2 (fuzzy region). In this case, the FC needs more measurements to make a decision. 

 

Here, a gap is always appear between the CV under H1 and under H0 and this gap 

is depending on the chosen value of SNR, for this method the gap is divided into 3 regions 

(from -∞ to λ1, from λ1 to λ2 and from λ2 to ∞) 
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Fig.2 -3: Double Threshold Sequential Method. 

 

 

The test statistic at FC is calculated by:  

{
 
 

 
 if    CV =

µ̂𝑍𝑠

�̂�𝑍𝑠
> λ2 ,                                                               decide H1   

if      CV =
µ̂𝑍𝑠

�̂�𝑍𝑠
< λ1 ,                                                                decide H0    

if  λ1 < CV =
µ̂𝑍𝑠

�̂�𝑍𝑠
< λ2   ,     𝑓𝑢𝑧𝑧𝑦 𝑟𝑒𝑔𝑖𝑜𝑛(𝑡𝑎𝑘𝑒 𝑜𝑛𝑒 𝑚𝑜𝑟𝑒 𝑚𝑒𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡) 

            (83) 

 

The gap between CV under H0 and CV under H1 taken and divided to 3 equally 

regions to determine the double thresholds (λ1, λ2) as follow: 

 

λ1 =   CVH0 +
CVH1 − CVH0

3
                                                                         (84) 

λ2 =   CVH0 +
2(CVH1 − CVH0)

3
                                       (85) 

 

If CV > λ2, it means the PU present and we get 1 detection.  

If CV < λ1, it means the PU absent and we get 0 detection.  

If  λ1 <CV < λ2 , it means no decision can make (continue monitoring ). 
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The detection probability and false alarm probability of the FC can be written as: 

{
PFAFC = p(CV >  λ2    /H0)

PDFC =  p(CV >   λ2    / H1)
                      (86) 

 

In SS, the system will stop at FC due to the stopping rule determined by equation 

(83), which is a simple thresholding scheme for which a desired value of 𝑃𝐹𝐴FC is 

achieved. The flowchart of Fig.2 -4 illustrates the algorithm used to find the decision of 

the sequential method at FC. 

 

 

Fig.2 -4: Flow Chart of Double Threshold Method at FC. 

 

 

 

https://en.wikipedia.org/wiki/Stopping_rule
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Chapter 3  

Simulation Results 

3.1 Design Parameter 

 

In this section, we encoded the signal in MATLAB to simulate the output signal 

from the ED integrator. It consists of the energy values of each sample signal. Then design 

an energy detector to detect the energy of different samples from the simulated signal we 

get. Comparing the energy which we detected with the threshold λ (which we consider it 

a single threshold technique) to be able to determine the presence or the absence of the 

PU. 

The output signal from the ED integrator follows Chi-square distribution, but in 

section 2.2.2, we assume the Chi-square distribution as Gaussian distribution when 

samples are large. 

Then we set the values of the parameters to simulate the signal as follow: 

Nu = 30; Nm is variable (1-30); SNR = 0 dB (at the sensor nodes); the number of 

samples (that each sensor makes processing to it to justify the use of CLT) T = 100; and 

the noise power σ2w=1 for simplicity; the  pr(H0) =  0.5 and  pr(H1)= 0.5. 

 

a)  Under 𝐇𝟎 :  X~𝑁 (0, σ2w) ~ 𝑁 (0, 1) ; since SNR =0 dB. 
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So x1
2~   χ1

2  is Chi-square with 1 degree of freedom. 

Then       ∑  𝑋𝑡
2 𝑇

𝑡=1  ~    χ𝑇
2 = Γ (

100

2
 ,2)  

µ𝑌/𝐻0= 100*1=100 

 

σ2𝑌/𝐻0 =2*100*1=200 

 

b)   Under 𝐇𝟏 :  X~𝑁 (0, σ2s + σ
2
w)  ~𝑁 (0, 2) 

Then       ∑  Xt
2 T

t=1  ~     Γ (
100

2
 ,4)  

 

µY/H1=100*2=200 

 

σ2Y/H1 =2*100*4=800 

 

 when 𝛾 = 1 (as NP), we determine a, b, and c using equations (20), (21) and (22). 

Since the Q function cannot be solved analytically, we then used MATLAB to 

numerically determine the roots R1, R2. Pfa=0.1 is the result of the roots based on 

equation (28). 

At R1=82.5 and R2=157.5,  Pfa=0.1080 is found at these roots. Next, find the Pd 

by substituting the roots in equation (32): Pd= 0.9335. 
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After that, the signal, which is encoded as zero-mean, is Gaussian-distributed. The 

noise is added randomly zero-mean, and Gaussian-distributed too. T samples were taken 

from each SU and added after being squared to be a Gaussian distribution.  

 

Next, using equation (42) to compute CV for each user, the FC determines the 

estimated mean and variance. These were carried out under H0, H1. Next, we have 30 CV 

values from all SUs. The maximum under H0 and the minimum under H1are considered 

to compute η, for example, if SNR=0 dB, α=0.4. In this case, η represents the mean 

difference between the CVH0 and CVH1. 

 

If CV > η, it means the spectrum is occupied by primary users and we get 1 

detection.  

If CV < η, it means the spectrum is idle and we get 0 detection. (We ignore the 

possibility of CV = η).  

As an example, to show calculation: let α = 0.4, Pfa = 0.1,  Pd = 0.9335,  Nm =

10,  Nn = 20. 

 

Under 𝐇𝟎 : 

Mean ZsH0
 = ∑ (1 −  Pfa)α +  Pfa(1 − α)   

 10
K=1 + ∑  Pfa  

 20
K=1    

                   =∑ ((1 − 0.1)0.4 + 0.1(1 − 0.4)  )  10
K=1 + ∑ 0.1   20

K=1 =6.2 
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Variance  ZsH0
= ∑ [(1 − α)(1 −  Pfa) + Pfaα ][(1 −  Pfa)α + Pfa(1 − α)]

 10
K=1 +

                     ∑ [(1 −  Pfa) Pfa ]
 20
K=1               

  = ∑ [(1 − 0.4)(1 − 0.1) + 0.1 ∗ 0.4 ][(1 − 0.1)0.4 + 0.1(1 − 10
K=1

0.4)]   +  ∑ [(1 − 0.1)0.1 ] 20
K=1   =2.436+1.8=4.236. 

CVH0= 
Mean ZsH0

√Variance  ZsH0

 

 

Under 𝐇𝟏 : 

Mean ZsH1
        = ∑ (1 −  Pd)α +  Pd(1 − α)   

 𝐍𝐦
K=1 + ∑  Pd  

 𝐍𝐧
K=1           

                          = ∑ ((1 − 0.95)0.4 + 0.95(1 − 0.4)  )  10
K=1 + ∑ 0.95   20

K=1 =24.9 

 

Variance ZsH1
 = ∑ [(1 − α)(1 −  Pd) +  Pdα ][(1 −  Pd)α +  Pd(1 − α)]

 𝐍𝐦
K=1 +

∑ [(1 −  Pd) Pd ]
 𝐍𝐧
K=1  

                         = ∑ [(1 − 0.4)(1 − 0.95) + 0.95 ∗ 0.4 ][(1 − 0.95)0.4 + 0.95(1 −10
K=1

0.4)]   + ∑ [(1 − 0.95)0.95 ] 20
K=1   = 2.419+0.95=3.369. 

 

CVH1= 
Mean ZsH1

√Variance  ZsH1
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This indicates that the CV depends on α, , Nm, Nn. A 10000 iteration of a Monte 

Carlo simulation is used to implement the CV. The CV in the MATLAB simulation then 

matches, within acceptable errors, the CV based on the theoretical equations (60) and 

(61). As a result, the method works well in the simulation and the results are satisfactory. 

 

 

3.2 Simulation Results 

 

3.2.1: Parameters Effect on CV 

 

In simulation, based on that CV depends on these variables (α, ℓ, N𝑚), many runs 

are done as follow: 

1- Changing the number of measurements or the forwarding times ℓ. 

2- Changing the attacking probability α. 

3- Changing the number of N𝑚 from 1-30. 

 

Fig.3-1 (a) and (b) demonstrate that, when the SNR is equal to zero dB, there is a 

gap between H0, H1 for various attacking probability values (0.1,0.2,0.4,0.5,0.6, and 0.7). 

Also, it is demonstrated that when the attacking probability increases, the CV gap between 

H0 and H1 decreases, with the largest gap for all SNR values occurring at attacking 

probability α = 0.1. Additionally, it seems that the gap is least when N𝑚=30.  
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Fig.3-1 (a): Coefficient of variation for α = [0.1,0.2,0.4] as a function of number of malicious. 

Fig.3-1 (b): Coefficient of variation for α = [0.5,0.6,0.7] as a function of number of malicious. 
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The relationship between various SNR values (-4 to -10 dB) and CV under H0, H1 

when N𝑚 = 20 at three distinct attacking probabilities is shown in Fig.3-2. It is 

demonstrated that the gap between H0 and H1 decreases with an increase in the attacking 

probability (the gap is largest for all SNR values at α = 0.1). 

 

Fig.3-2: Coefficient of variation for α = [0.1,0.2,0.4] as a function of SNR when N𝑚 =20. 

 

Fig.3-3 shows the same result for Fig.3-2 but as N𝑚 is decreased the gap is being 

less. 
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Fig.3-3: Coefficient of variation for α = [0.1,0.2,0.4] as a function of SNR when N𝑚 =10. 

    

So, it is concluded that SNR, attacking probability α, N𝑚: these parameters 

affected on the gap of H0, H1. 

 

Fig.3-4 shows 3D figure for the relation between CV, α and the number of 

malicious N𝑚 that there’s a gap between H0, H1 what ever the N𝑚 in the system and at all 

attacking probability α. Also, the gap decreases when N𝑚 = 30, α more than 0.5. 
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Fig.3-4: 3D of the relation between CV, α and the number of malicious. 

 

As shown in the former figures, FC is able to determine the threshold and make a 

conclusion by comparing the CV values with it.  In order to determine whether the PU 

exists with the error probability that must be acceptable for the signal to be detected at 

FC. 

 

3.2.2: Parameters Effect on Error Probability 

 

Fig.3-5 shows the relation between the error probability and the number of 

measurements ℓ which is in range of (4-30) in the figure. Such that, if ℓ increases Perror 

decreases. For example, at ℓ =30 the Perror = 0.0002425.  
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Fig.3-5: The probability of error Perror as a function of forwarding times ℓ at SNR=-2dB, α = 0.2. 

 

Fig.3-6 shows the relation between the error probability and attacking probability 

α  at ℓ =20 and SNR= -2dB. It’s clear that if α  is high then the  Perror is worse as the 

malicious will falsify the decision more. The worst error probability Perror = 0.5 𝑎𝑡 α =1. 

 

 

 



54 | P a g e  
 

Fig.3-6: The probability of error Perror as a function of attacking probability α  at ℓ =20 and SNR=-2dB. 

 

Fig.3-7 shows the relation between the error probability and the percentage of 

malicious in the system at α = 0.5, ℓ =20 and SNR= -2dB. It’s clear if the percent of Mus 

increase the Perror  increase. for example: at percent =0 which means all SUs are LUs. 

So, the Perror is less. And if the percentage  =1 which means all SUs are MUs. So, the 

Perror is the worst. 
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Fig.3-7: The probability of error Perror as a function of percentage of malicious users at SNR=-2dB, α =

0.5. 

 

3.2.3: Comparing the Analytical and Numerical Forms for the CV 

 

Fig.3-8 shows the relation between CV and number of malicious Nm under 

constant SNR and attacking probability α that there’s a gap between H0, H1 what ever the 

Nm in the system. Also, the gap decreases when Nm = 30, α more than 0.5. Also, There’s 

a matching between the CV values under H0, H1 which mean the results are satisfying at 

the same SNR, Nm, α,  Pd and Pfa. 
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Fig.3-8: Coefficient of variation as a function of number of malicious when α = 0.5, SNR = 0dB, ℓ=1000. 

 

Table 3-1 shows the  calculations of CV values for some samples when α =

0.5, SNR = 0dB, ℓ=1000, it is confirmed that the values of CV numerically and 

theoretically are almost the same with acceptable error  whatever the α in the system 

which mean the results are satisfying at the same SNR, Nm, α,  Pd and Pfa. 
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Table 3-1: Sample calculation of Fig.3-8. 

 

Fig.3-9 shows the relation between CV and attacking probability α that there’s a 

gap between H0, H1 whatever the  α in the system and there’s a matching between the CV 

values under H0, H1 which mean the results are satisfying at the same SNR, Nm, α,  Pd and 

Pfa. 

Fig.3-9: Coefficient of variation as a function of α when N𝑚 =10, SNR=0dB, ℓ=1000. 
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Table 3-2 shows the  calculations of CV values for some samples when N𝑚 =10, 

SNR=0dB, ℓ=1000, it is confirmed that the values of CV numerically and theoretically 

are almost the same with acceptable error  whatever the α in the system which mean the 

results are satisfying at the same SNR, Nm, α,  Pd and Pfa. 

Table 3-2: Sample calculation of Fig.3-9  

 

 

3.2.4: Comparing Error Probability between the Majority Rule and the 

Fixed Proposed Algorithm 

 

Fig.3-10 shows the relation between the probability of error Perror  and the 

percentage of malicious users at SNR=0dB, α = 0.5. it is appeared that there’s an 

matching in both methods at these values and that when all the system is malicious the 

Perror  =0.5. It is confirmed that the fixed algorithm is suboptimal of the majority rule. 
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Fig.3-10: Probability of error Perror as a function of number of malicious when α =0.5, SNR=0dB, 

ℓ=1000. 

 

3.2.5: Comparing the Number of Measurements 𝓵 Between the Sequential 

Method and the Fixed Proposed Algorithm 

 

The sequential method uses the same argument as in chapter two to treat the sum 

of the hard decisions as a Gaussian approximation because of CLT. We get two sets of 

measurements and calculate the PDFC ,  PFAFC for a given value of the false alarm 

probability. When the target Pfa is equal to the value of the PFAFC, the system stops 

working. If not, it will measure again until the target value is reached. 
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Fig.3-11 shows the relation between the number of measurements ℓ and the 

attacking probability α  at SNR= -2dB, Nm = 10  to obtain a fixed value of Pfa for 

example 0.1 for both proposed algorithms (fixed and sequential). It is appeared that in 

both methods when α  increase the number of measurements need to achieve Pfa =0.1  

increase as the effect of malicious  is increased in the system.  Moreover, it is confirmed 

that the sequential method reduced the overhead in the system (reduce the required  ℓ  

values) as it’s need less values of ℓ  than fixed algorithm to obtain the same Pfa  at the FC. 

The fixed method  make decision used all ℓ arrived to FC. But the sequential one used in 

maximum 0.6 of ℓ measurement’s. it is appeared that at high α the sequential method is 

better than the fixed one. 

Fig.3-11: The number of measurements ℓ as a function of attacking probability α  at SNR= -2dB , Pfa=0.1, 

Nm = 10. 
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Table 3-3 shows the  calculations of the forwarding time required for the both 

algorithms (fixed and sequential)values at all attacking probability α values (0-1 ) when  

SNR= 2dB , Pfa=0.1, Nm = 10 and it is appeared that when 𝛂  increase, the number of 

measurements need to achieve Pfa =0.1  increase. Also, the sequential method reduced the 

overhead in the system for example at α=0.9, the sequential needs 203 measurements but 

the fixed need 450 to obtain the same Pfa  at the FC which mean  approximately half of 

the measurements. 

Table 3-3: Forwarding Time calculation of Fig.3-11. 

Attacking 

Probability 𝛂 

Forwarding Time 

Fixed 

Forwarding Time 

Sequential 

0 2 2 

0.1 6 5 

0.2 7 6 

0.3 12 7 

0.4 16 8 

0.5 18 9 

0.6 20 16 

0.7 25 18 

0.8 60 26 

0.9 450 203 

1 500 253 
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Chapter 4  

                              Conclusion 

 

4.1  Conclusion 

 

The benefits of using collaboration among SUs are reduced by the presence of MUs 

in a CSS environment. In a CSS environment, effective and prompt PU detection is required 

to prevent the FC from making incorrect conclusions about the PU status. This thesis focuses 

on improving the performance of CSS using CV tool. The FC is taking sensing information 

from all cooperating SUs, including LUs and MUs, and combining them for a more precise 

and concrete decision about the licensed user spectrum. The Simulations reflect the 

superiority and authenticity of the proposed scheme in producing an accurate and reliable 

decision in CSS at the FC. Also, the algorithm can restrict a user's inappropriate behavior in 

the CR network and avoid privacy violations and improve the detection probability. 

 

The main results obtained by this thesis are: 

 When the number of MUs in the system varies between 0 and 30, there is always a gap 

between the CV under H0 and H1, which can be used at this time to make a decision at 

FC. 
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 The CV is investigated for the number of measurements ℓ, attacking probability α, and 

the percentage of malicious user effects, and the error probability is determined as follow: 

 When the percentage of MUs increase the Perror increase as the gap decrease. 

 When the attacking probability α increase the Perror increase as the gap decrease. 

 When the number of measurements ℓ increase the Perror decrease.   

 

 The fixed proposed algorithm is compared with the traditional majority rule in terms of 

the error probability.  

 

 The sequential proposed method is compared to the fixed in terms of the number of 

measurement, it is confirmed that sequential method reduces the overhead in the system. 
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